
The Wall Journal

Issue No.

May/June 1995

The International Journal of Transportation-Related Environmental Issues

Also In This Issue:

page 12: Visit our very own

for a preview of many of the products, systems and services available in the market for the measurement and abatement of transportation related noise. To borrow a phrase from Ma Bell, "Let your fingers do the walking".

- 2 Editor's Corner
- 3 Texas DOT Search for Noise Barrier Solutions
- 3 Press Release Industrial Acoustics Company
- 4 European Standardization for Sound Barriers
- 10 Insertion Loss Performance of Road Noise Barriers
- 12 A1F04 Committee Summer Meeting in Boston
- 24 Reader Registration and Subscriptions

The Wall Journal

Volume IV, 1995 Issue No. 17

The Wall Journal is published six times a year. Issues are mailed bi-monthly on or about the end of the first month in the designated two-month issue date.

The Wall Journal is a publication of AcoustiCom Publishing Corporation. Editorial, subscription and advertising offices are located at 205 Danby Road, Lehigh Acres, FL 33936. Telephone us at 813 369-0178 or fax 813 369-0451.

Submissions of papers, articles, letters, and photographs for publication should be addressed to The Wall Journal, P.O. Box 1217, Lehigh Acres, FL 33970-1217.

Editor El Angove

Director of Publications John G. Piper

All material submitted becomes the property of The Wall Journal, and may be edited for length, clarity and accuracy. Material will not be returned without special arrangements prior to submission. The Wall Journal will not be responsible for lost or damaged materials.

Published articles, comments, letters, papers and advertisements do not necessarily represent the views and/or endorsements of The Wall Journal. The authors of submitted material are solely responsible for the truth and accuracy of their submissions, and The Wall Journal cannot be held liable for any damages suffered by our readers as a result of their use of published material.

Circulation is made to government agencies, consulting engineers, scientists, universities, contractors, vendors and others with an interest in transportation-related environmental issues.

Subscription and advertising information are shown on the back cover page.

* * * * *

The Wall Journal is composed in its entirety on Apple Macintosh computers using Quark**XPress** electronic publishing software.

Printed in the U.S.A. Copyright 1995 The Wall Journal

EDITOR'S CORNER

I am not a scientist. I know that, the Good Lord knows that, and I guess just about everybody who knows me knows that one thing I am not, is a scientist. I think I decided not to become a scientist when I was about ten years old. My parents took my brother and I to the Odeon theater in Bonne Terre, Missouri to see the movie "Frankenstein".

When I saw what happened to Dr. Frankenstein (the scientist), I figured that would be a pretty dumb thing to want to be. My younger brother, Don, never even gave it a thought — he sat through the whole movie peeking between his fingers. He turned out to be a baseball pitcher. Figuring out what makes a pitched baseball curve was science enough for him.

Not being a scientist has had its advantages and disadvantages. The advantages are that I didn't get my brain cells cluttered up with all those formulas and equations — I had my whole head clear to think about girls, jazz, fishing, model airplanes, photography and stuff like that. *Real* stuff.

But, lately, not being a scientist has its disadvantages. It seems like I am coming more and more in contact with real live scientists in my endeavors with this magazine. And, some of them are heaping a real load on me. I've gotten to where I know a decibel from a dumbbell, I can write $E = mc^2$ on the blackboard, and I can program my VCR. But, to me, quantum physics means a lot of ExLax.

However, I do have an inquisitive nature, and when some scientist lays a new theory on me, I have *just enough* innate knowledge to grasp the outer edge of what he is talking about. That's my disadvantage — I can't get any further than that.

Take Frank Hodgson, for example. Frank called me some months ago and told me of an experience he had while visiting a Mayan temple in the Yucatan Peninsula. He said that if you stood in front of the temple and shouted at it, the echo came back in a piercing shriek. Frank termed the phenomenon "parametric amplification of sound". I immediately sensed that this might be something of use in the acoustics field, since I had never heard the term used before.

If you have been a regular reader of The Wall Journal, then you know that I have published Frank's articles in Issues 11, 13 and 15, in which he writes at length of his theories on this acoustical phenomenon. He had hoped to find acoustics experts who would work with him to determine if some practical applications could be developed.

Unfortunately, he did not receive much response from the articles. A few people did contact him, but nothing much happened.

By this time, I was even beginning to lose enthusiasm (I have a short attention span). And then, a couple of weeks ago, I had a call from Wayne Van Kirk from Houston. He had read Frank's articles and became

very interested since he had a similar experience in the same Mayan ruins. I quote excerpts below from his letter to a friend:

by El Angove

"Last Fall my wife and I went on a vacation to the Yucatan (Mexico) taking in a brief tour to the Mayan ruins at Chichen Itza. The Great Ballcourt (the largest by far of its type) has amazing acoustic properties which you may well be aware of since the phenomena is well known.

I was standing at location C while a couple were having a conversation in a normal speaking voice, one at location A and one at B, 480 feet from one another. The quality of sound at my location C was as if we were in a small well-damped room. Perfectly clear! From what I have read, location C where I was standing was not a chance "sweet spot" but the whole or much of the interior of the Ballcourt has this acoustical quality. This is something that must be experienced to be appreciated.

The Ballcourt acoustics struck me as a paradox in that it seemed too amazing to be accidental but difficult to imagine that the Maya had the engineering capability to create it intentionally. I spoke with an archaeologist who has spent 25 years at this site. She felt that this phenomena had to be an accident as nothing they have unearthed would indicate otherwise.

My search also revealed information regarding unique sound modification properties of the Pyramid of Kukulcan at Chichen Itza, a structure about 200 yards from the Ballcourt. If unwanted noise can be shifted to an inaudible 45 KHz passively with light weight panels, as the information suggests, would this not be revolutionary technology, one that has been lying dormant for 1,000 years"? End of quote.

O.K. I'm not a scientist, but I can sure smell something here. I don't care if aliens from outer space visited Mexico 1,000 years ago and showed them how to build acoustic walls. If there is good science lurking in those ruins, I say we ought to get down there and find out. What do you say, acoustical scientists?

Anyone for Chichen Itza? ■

ANNOUNCEMENT

TEXAS DOT PROJECT 1471 — THE SEARCH FOR EFFECTIVE NOISE BARRIER SOLUTIONS

Principal Researchers:

Professor Richard E. Klingner, University of Texas, Austin, Texas
Dr. Michael T. McNerney, Center for Transportation Research, Austin, Texas
Professor Ilene Busch-Vishniac, University of Texas, Austin, Texas

The need for development and implementation of effective noise barrier technology is recognized not only in Texas, but across the nation. The Texas Department of Transportation (TXDOT) is currently sponsoring research with the goal of developing improved designs for noise barriers which are more effective, economical and aesthetically pleasing. The objectives of this project are to:

- Evaluate existing noise barrier materials and systems in use by TXDOT with regard to their acoustical performance, visual aesthetics, structural requirements, and cost effectiveness.
- Develop performance criteria for different geometric and terrain conditions that permit the quantification of acoustical performance, aesthetics, structural soundness, and life-cycle costs.

- Develop methodology for selecting application specific designs.
- Develop a model for evaluating parallel reflections of noise barriers and make recommendations as to when it should be used for design.
- Develop improved specific noise barrier system designs to include material specifications, acoustic and structural design methodology, and construction details.

The final product will be a complete design guide that provides TXDOT district designers with a set of simple design rules as well as current information on noise wall systems that can be used to design noise walls.

The research team is interested in receiving information from manufacturers, contractors, engineers and state DOT representatives on systems in use or any particular

experiences related to the development of a noise wall design guide.

Any manufacturers or interested parties with pertinent information and/or innovative wall systems, should contact, or send literature, to:

Dr. Michael McNerney
Center for Transportation Research
3208 Red River Street, Suite 200
Austin, TX 78705
Fax: (512) 480-0235. ■

PRESS RELEASE

FOR IMMEDIATE RELEASE:

JOHN M HANDLEY OF INDUSTRIAL ACOUSTICS COMPANY APPOINTED SENIOR VICE PRESIDENT, MARKETING & SALES

Bronx, New York. The appointment of John M. Handley as Senior Vice President of Marketing & Sales for Industrial Acoustics Company (IAC), an international noise control engineering and manufacturing company in New York, has been announced by IAC's President, Martin Hirschorn, effective immediately.

Handley, who joined the company in 1961, is well-known throughout the

industry for his expertise in meeting the demands in international markets for IAC's noise control products and systems. Now responsible for directing IAC's sales organization domestically and internationally, he will also spearhead long range planning and marketing.

A graduate of Rutgers University, John Handley has traveled throughout the Pacific Rim including Japan, South Korea, Hong Kong, Taiwan, Singapore, Malaysia and Thailand to obtain licensees and sales representation for IAC. He has lectured extensively and published on the subjects of hearing conservation and noise control.

IAC has first class engineering and manufacturing capabilities in the U.S. and Europe serving the architectural, air conditioning (HVAC), industrial, medical/life sciences, power plant and military/commercial aviation markets.

The company's widely used modular economical studios for broadcasting, recording and music practice – with guaranteed sound reductions and controlled environments from live to echo free – are readily installed.

IAC's range of acoustical ceilings is ideal for auditoria, theaters, convention centers, correctional institutions, food and beverage facilities and commercial buildings. IAC's operable walls permit the effective acoustical subdivision of spaces from very large to very small.

Other company products include HVAC, jet engine and gas turbine silencers – medical audiometric testing rooms – military/commercial aircraft "hush-houses" and engine test cells – operable walls – anechoic, reverberant and other test facilities – power plant and shipboard silencers – traffic sound barriers – quiet rooms/enclosures for industry, and detention cells.

IAC's research and development division is internationally recognized for innovative solutions to unusual problems. Quality control in IAC's Aero-Acoustic Laboratory ensures the ongoing accuracy of all ratings. The laboratory develops special purpose silencers, room enclosures and other products, and arranges witnessed performance testing.

European Standardization for Sound Barriers

By Bernard DUCONGE, Association Professionnelle des Rêalisateurs d'Ecrans Acoustiques, Neuilly, France

As a contribution to European Unity, a huge work of standardization began more than ten years ago to compare the standards used in these countries, the main ones being England, France and Germany with BS, NF and DIN. They try to decide common rules, even if that leads too often to agree on the lowest ones.

Concerning sound barriers, the European Commission for Standardization (CEN, from the French title Commission Europeenne de Normalisation) settled the 226th Technical Committee for roads equipment, in which the 6th Working Group is in charge of the sound barriers. Therefore, every European Standard concerning sound barriers will have the reference digits: CEN/TC 226-WG6 and the title "Road Traffic Noise Reducing Devices".

In the working groups, not only the twelve countries forming the European Community meet, but also other countries that would or not join the Union, as Austria, Finland, Sweden, Switzerland, etc... to name those who effectively took part in the Working Group meetings.

After three years of meetings, every three months on average, more than half of the job has been achieved, and five standard texts have been written with internal approval. Two years of approval are still necessary, including submission to a wide public inquiry, to reach the final agreement and give these standards the strength of European common law.

These five standards concern:

1- **No. N 91 E:** Non acoustic performance, part 1: mechanical performance and stability requirements.

Five actions are considered:

- wind loading, developed in the normative annex A
- •<u>self weight</u>, treated in the normative annex B, including mechanical requirements for structure, fixing devices, etc.
- damage caused by flying stones: a test method is accurately described in the normative annex C
- <u>safety when collision</u> under impact by vehicles is explained in the informative annex D
- dynamic load from snow clearance, depending on plowing speed, is assessed by calculations or load tests; it is detailed in the informative annex E

2- No. N 92 E: Non acoustic performance, part2: general safety and environmental considerations

Six elements are studied:

- <u>fire resistance</u>, developed in the normative annex A that separates the materials into four classes:
 - 1. fire-proof
 - 2. fire-resistant
 - 3. flammable
 - 0. not tested

and explain a fire test on a standard and dried panel of 2 x 1.5 m

- <u>secondary safety</u> concerning any danger of falling debris; a test is developed in the normative annex B
- environmental protection against any adverse effect of any components, or on the other hand recycling of products, is shortly treated in the normative annex C
- means of escape in emergency are developed in the normative annex D; they include means of access for maintenance
- <u>reflection of light</u> is explained in the informative annex E
- transparency is developed in the informative annex F with mathematic definition and diagrams including the specific aspect of some dynamic transparency for merging traffic
- 3- No. N 98 E: Test method for determining the acoustic performance. Part 1: intrinsic characteristics, sound absorption.

Test arrangement is more developed than described in EN 20354; it is pointed out that all the reflecting parts, and especially posts, have to be included in the specimen tested for which the sample lay on the floor of the testing room. Single number rating of sound absorption DL α is given by the formula:

DL
$$\alpha = -10 \log \left[1 - \sum_{i=1}^{18} \alpha S_i \times 10 \right]^{*}$$

concerning each one-third octave band. Five categories of absorptive performance are defined in the normative annex A:

A0 = not tested A1 = DL α < 4 A2 = 4 to 7 A3 = 8 to 11 A4 = DL α > 11

The informative annex B is a guidance note on use of DL α rating, concerning multiple reflections and undergoing diffraction that may alter the original spectrum and emphasize the low frequency components.

4- No. N 99 E: Part 2. Intrinsic Characteristics: Airborne Sound Insulation.

For this test, the sample is standing up, sparing the testing room into two separate parts (EN 20-140-3). The single number rating of airborne sound insulation DL is given by the formula:

$$DL = -10 \log \left[\sum_{l=1}^{18} 10^{0.1 L_l} \times 10^{0.1 L_l} \right] *$$

Four categories of airborne sound insulation level are defined in the normative annex A:

B0 = not testedB1 = DL < 15

B2 = 15 to 24

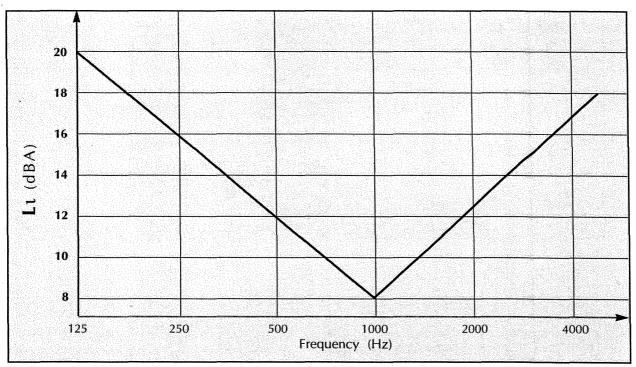
B3 = DL > 24

*αSι = Sound absorption coefficient in the ith one-third octave band

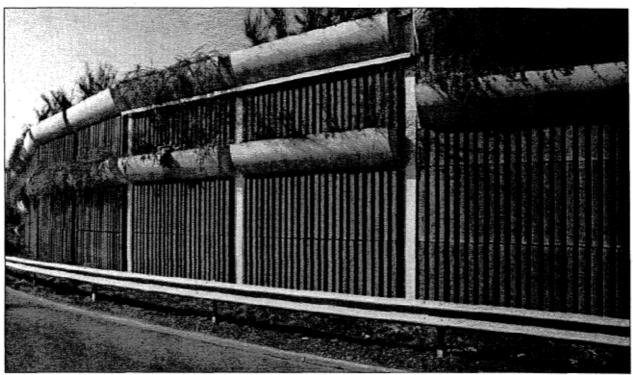
Li = Normalized A-weighted sound pressure level (dB) of traffic noise in the ith one-third octave band

 $R\iota = Sound reduction index in the \iota th$ one-third octave band

5- No. N 100 E: Part 3, Normalized traffic noise spectrum.


The reference spectrum for assessment of the acoustic performance of traffic noise reducing devices varies roughly as shown on the graphic on the next page. Other points still in study and discussion are:

- 1. <u>long term durability</u> (part 3 of non acoustic performance).
- 2. <u>extrinsic performance</u>, i.e., in situ noise decreasing which additionally depends on factors which are not related to the product itself, e.g., the dimensions of the barrier and site factors (site geometry, ground impedance...).


France adopted an in situ test (Standard No. NF 31089) based on a short noise from a revolver shot, the effect of which are registered on computerized microphones at fixed points. But this method did not pass the critiques made by European partners, due to hazardous results in some cases.

3. <u>intrinsic performance</u> for in situ tests. A research survey started, involving a lot of major European laboratories and universities in order to try to clearly define sources, noise treatment and reception, and to study refraction characteristics.

These three subjects have many relations together; therefore, they will be managed by mixing the two initial Task Groups.

REFERENCE SPECTRUM FOR ASSESSMENT OF THE ACOUSTIC PERFORMANCE OF TRAFFIC NOISE REDUCING DEVICES

The Beton Bois Systeme Noise Barrier at LYON-ECULLY. This product achieved the first prize in the competition of acoustic screens organized by the Ministry of Civil Engineering and Housing and the State Secretary's Office in Charge of Environment

For further information, please contact:

Bernard DUCONGE

APREA

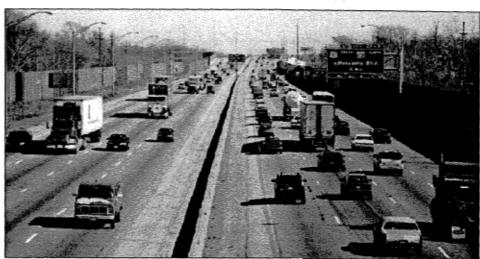
80, Avenue Charles de Gaulle

92200 Neuilly-sur-Seine

Neuilly, France

A Sound-Absorptive Traffic Corridor <u>The I-80/94 Borman Expressway</u> in Indiana — A Case Study

By E.A. Lamberson, P.E.


The Indiana Department of Transportation (INDOT) has constructed a total of 33,000 lineal feet of parallel sound barriers along a five mile section of I-80/94 Borman Expressway in Hammond, Indiana. The construction was undertaken by the LaPorte District of INDOT under two separate competitively bid design/build contracts.

The Special Provisions for these two projects did not list approved sound barrier manufacturers nor approved systems, but did stipulate minimum performance standards for structural capacity, weathering, durability, appearance and acoustical ratings.

Preliminary engineering layouts for the project specific requirements and sample calculations and details were required to be submitted to the INDOT Project Manager, Mark Zwoyer, and to all prospective contractors after advertisement and before bid. These preliminary submittals were for information and for discussion, but were not formally reviewed and no prebid approval

(Continued next page)

I-80/94 Borman Expressway carries 150,000 vehicles per day. Sound barrier design was modeled for 192,000 vehicles per day by the year 2016.

status was granted. Only the post-bid full technical submittal by the successful general contractor using a selected system was reviewed for compliance with the technical requirements of INDOT.

Superior Construction Company of Gary, Indiana was the successful bidder on both contracts. Superior selected the Durisol[™] sound-absorptive system to provide the sound barrier requirements for both the post-and-panel ground-mounted and traffic barrier-mounted sound wall requirements.

Due to relative close proximity of the parallel sound barriers and the existence of local streets paralleling the barriers on the residential side, two-sided sound-absorptive barrier specifications were chosen. The barriers were required to have a minimum noise reduction coefficient (NRC) of 0.80 on the highway side and 0.70 on the residential side. A minimum sound transmission loss (STL) of 23 dB was required through product testing.

The INDOT Borman Expressway corridor carries 150,000 vehicles per day.

(Continued on page 8)

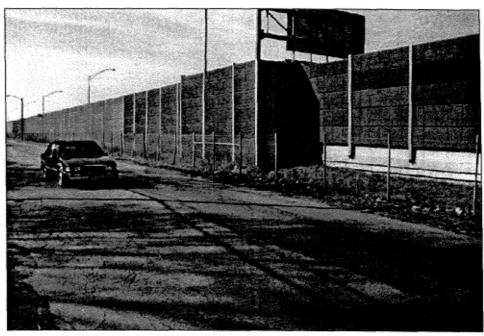
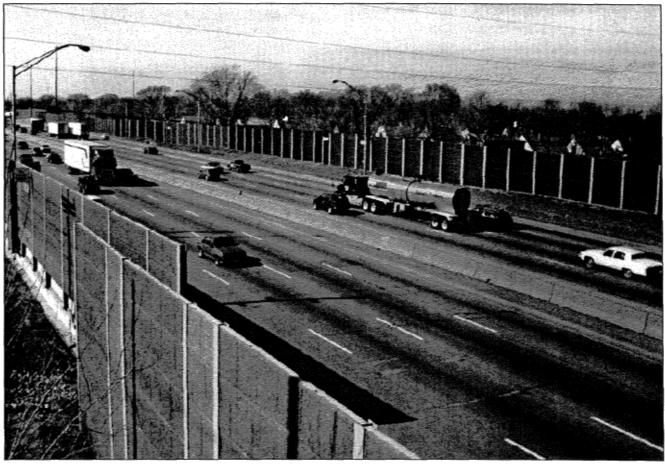
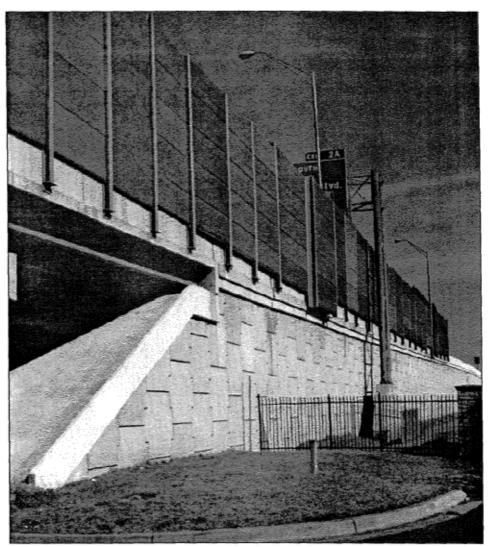



Photo above: A local street on the residential side of the Durisol sound wall, as noted in photo at bottom of previous page. The sound-absorptive surface on both sides of the wall provides noise attenuation for community noise as well as highway noise.

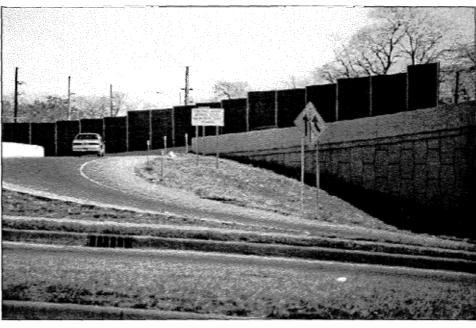
Photo below shows emergency crew access and motorist escape was provided by overlapping sound wall sections. Pressed-in ashlar stone wall texture faces local streets and residences, while vertically fluted texture side faces traffic. 500-foot sections of wall contained full-height sectors of light and dark brown color chosen from the INDOT preselected color alternatives.

The Wall Journal May/Jun 1995 Issue No. 17

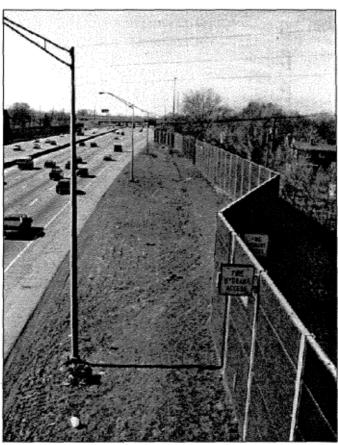

This Michigan/Indiana truck/train corridor is believed to be the busiest in the nation. INDOT Environmental Specialist Robert Buskirk used the Stamina II program to model the project with an expected 192,000 vehicles per day by the year 2016. To reduce the predicted 80-85 dBA sound level to the desired 67 dBA maximum, a sound wall of 26 to 28 feet high would have been required.

As the taller wall was not economically feasible, a 16 foot high wall was selected to provide a 5-7 dBA reduction everywhere and a 13 dBA reduction in some sections. Although the sound model using Stamina II did not include the reverberations of the parallel walls, the decision to use the more efficient sound-absorptive material was made to assure the desired sound attenuation.

The initial acoustical analysis by INDOT and the decision to select the sound-absorptive barriers was supported by a subsequent investigation of one critical section by the acoustical consultants Harris Miller Miller and Hanson.


The INDOT Special Provisions required that the soundwall construction use color which was selected from the preselected list of primary and complementary secondary colors chosen by INDOT. Each 500 foot section of the wall used a primary color for 70-80% of the section and a compatible secondary color for the remaining 20-30% of the section. The selected Durisol system used an ashlar stone finish on the residential side and a vertically fluted texture on the traffic side, using a combination of light and dark brown colors from the approved list.

The approved Durisol design solution utilized the maximum allowable post spacing of 15 feet. This post spacing was dictated by the structural capacity of the traffic barrier sleeper slab which was part of a Reinforced Earth® (mechanically stabilized earth) retaining wall system designed by INDOT and constructed under earlier contracts. For the ground-mounted section, anchor bolts were installed in the drilled caissons. Galvanized and painted wide flange steel posts were bolted to the anchor bolts as a second phase of construction.



Sound wall posts are attached to bridge parapet and traffic barriers mounted on Reinforced Earth retaining walls. Box out in barrier accommodates light standard.

15-foot maximum post spacing was controlled by bending capacity of barrier moment slab constructed on top of Reinforced Earth retaining wall constructed under previous contract. Steps in barrier follow sound wall profile.

The Wall Journal May/Jun 1995 Issue No. 17

Undulating, two-sided sound-absorptive sound barrier follows right-of-way line. Fire hydrant access is marked on both sides of the sound barrier.

Traces of salt-laden snow deposited on sound barrier by truck traffic and snow plows are visible 16 feet above pavement on ground-mounted sound barrier 10 feet from the guide rail.

The typical 3'-6" high by 15'-0" nominal horizontal dimension. Durisol panels, and other panel heights needed to achieve the project requirements, were stacked one panel at a time between adjacent wide flange posts. The traffic barrier-mounted wide flange units were bolted to the traffic barrier using a special detail which was devised by the contractor to allow attachment to a variable sloping surface but yet obtain the required verticality of the posts. The precise post spacing was not called for in the design/build requirements.

Utilities or other conflicts were identified. The plan submitted for approval was required to locate the posts to avoid these obstructions and obstructions not shown on the plans but detected in the site survey conducted by the contractor after the award. Posts were moved laterally and the wall adjusted perpendicular to the roadway and parallel to the roadway to avoid obstructions. Less than 15 foot post spacings were used where traffic barrier-mounted walls intersected with ground-mounted walls, or where special requirements to fit the utilities were required.

The only registered complaint at INDOT comes from a resident who reported that the sound walls made the area too quiet. Noises were now being heard that could not be heard prior to the construction of the noise barrier along the Borman Expressway.

(For additional information concerning this article, contact:

E.A. Lamberson, P.E. Midwest Regional Manager The Reinforced Earth Company 760 Pasquinelli Drive, Suite 344 Westmont, IL 60559 Tel. 708 655-0044 Fax 708 655-0064)

Insertion Loss Performance of Road Noise Barriers

By K.R. Fyfe and C.C. Harrison, Department of Mechanical Engineering, University of Alberta, Edmonton, Canada

INTRODUCTION

Several parameters influence the effectiveness of roadside noise attenuation barriers. These factors include the source and receiver positions, ground cover properties, barrier insertion loss, and atmospheric-conditions. This paper studies one of these parameters, namely barrier insertion loss.

There have been two principle classes of techniques for predicting the barrier insertion loss. Older methods made use of geometrical considerations that model the problem from an energy point of view and by and large ignore phase. A newer class of methods models the acoustic performance of barriers and berms utilizing wave-based models.

The basic difference between the ray tracing approach and the wave based procedure is in modelling the behavior of sound. Geometrical methods considers sound as a series of rays. Each ray follows a series of straight and diffracted paths from the source until it reaches the receiver. The procedure then utilizes a comparison between direct and diffracted rays in evaluation of the sound field [1]. On the other hand, a wave based method considers sound as a wave. Each direct, reflected and diffracted sound wave has an amplitude and phase, and the sound field is evaluated through interference of these waves.

MODELING

Wave-based acoustic modelling is primarily conducted by means of the finite element or boundary element methods. The former is principally used for interior problems while the boundary element method is ideally suited for exterior radiation and scattering problems. A two-dimensional boundary element model has been used in this work [2,3]. This 2D model assumes that the road and barrier are parallel and infinite and that the traffic can be modeled as a line source. Previous work with this type of a model has shown good agreement with both full and scale size experimental results [2].

The modelling is carried out in two stages. The boundary surface of the barrier or berm is defined utilizing a finite element preprocessor. An input mesh is created by outlining the surface boundary using nodes, discretized at six nodes per wavelength, and connecting adjacent nodes with conventional linear elements. This mesh is then read into the SYSNOISE acoustic analysis software package [3]. Here the source position and frequency, the barrier surface properties as well as the receiver position are defined. SYSNOISE then calculates the field

point pressures at desired locations.

The benchmark geometry for the following analyses consists of a source position 15m in front of the center of the barrier, 0.5m above ground with 20 receiver locations spaced every 5m behind the barrier at a height of 1.5m. The standard barrier will be a straight, hard, thin barrier 3m in height. Figure 1 depicts this geometry.

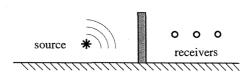


Fig 1: Geometry of a Single Barrier

BARRIER RATING SYSTEM

The barrier performance will be measured in terms of insertion loss (IL). The insertion loss is calculated from the difference of the sound levels with and without the barrier. Figure 2 shows the insertion loss in the shadow region of the standard barrier as a function of both frequency and position behind the barrier. Depending on the chosen frequency and receiver position, any point on the plotted surface could be a measure of the barrier's insertion loss (with a range of about 40 dB).

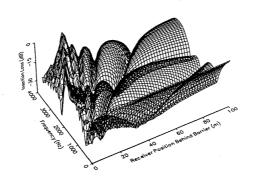


Fig 2: IL vs Distance and Frequency

One way to condense this information is to weight and sum the data according to a traffic noise spectrum. This spectrum will be a function of the type and speed of traffic as well as the road conditions. An example of an averaged traffic spectrum is shown in Figure 3 (ref [4]). It is seen that the majority of the energy is concentrated in the frequency range below 1000 Hz.

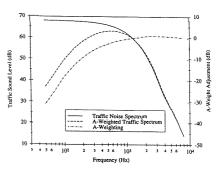


Fig 3: Traffic Spectrum and A-Weighting

Also shown on this curve are the commonly used A-weighting curve and the A-weighted traffic noise spectrum which is used for this work.

In this study, frequency averaged results are obtained by weighting seven octaveband center frequency results between 62.5 and 4000 Hz. As a check, it is found that these results compare almost identically with one-third octave-band center frequency data in the same frequency region. A frequency averaged result is shown in Figure 4 along with representative single frequency curves of 62.5Hz, 500Hz and 2000Hz. A large variation in the response is observed. Using only a single frequency or position would yield results quite different from the spectrally weighted curve. The insertion loss characteristics can be further simplified by considering the mean value over the selected receiver positions. In this case, the frequency weighted and spacially averaged insertion loss would be approximately 11dB.

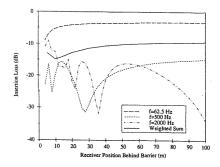


Fig 4: Weighted IL for Standard Geometry
RESULTS

The height of the barrier is the first variation of the standard geometry to be explored. The insertion losses of barrier heights between 2m and 4m tall are shown in Figure 5. A consistent pattern emerges whereby, independent the receiver loca-

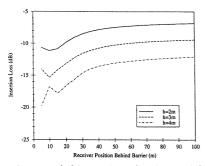


Fig 5: IL of Thin Barriers of Various Height

tion, for each 1m increase in barrier height, an additional 2.5dB of insertion loss is obtained.

Another important aspect to study is the sensitivity of the source position. Maintaining the source height of 0.5m above the ground, the source is moved between 2.5m and 20m from the barrier. Figure 6 shows the results of this geometrical consideration. The chart shows that the insertion loss increases dramatically as the source is moved closer to the barrier. This phenomena can be explained by the fact that as the source approaches the barrier, a greater percentage of the sound is reflected back towards the source and a lesser percentage diffracts around the top. This percentage can be related to the angle from the source to the top of the barrier. This parameter is one that is widely used in ray-based moels.

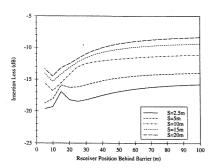


Fig 6: Effect of Source Position

Figure 7 shows the results of the same barrier that has a highly absorptive coating $(\alpha = 1, over the modelled frequency range).$ In this figure, the indicated insertion losses have been spacially averaged over the 20 receiver positions in the shadow region. It can be seen that as the source moves closer to the barrier, the effect of the absorption on the insertion loss increases. At a distance of 2.5m from the barrier, the absorptive coating provides an additional 3dB of insertion loss while at a source distance of 20m, the absorption increases the performance above the standard case by only about 0.5 dB. This would suggest that the use of absorptive coatings on a single barrier is most beneficial when the barrier can be located very close to the noise source as is the case with railways.

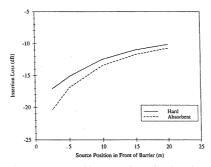


Fig 7: Source Position - Hard vs. Absorbent barrier

Introducing some geometrical complexity, the barrier insertion losses are also determined for angular, semi-circular and T-shaped barriers each having a height of 3m. The insertion losses for these geometries are shown in Figure 8. The superior performance of the T-shaped barrier is apparent. It is seen that this barrier has almost 5dB performance advantage over the angular berm of the same height. Similar results have been reported by [2].

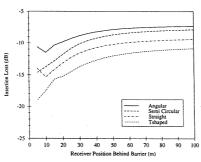


Fig 8: Effect of Barrier Cross-Section

Now consider two 3m high straight barriers 30m apart. The source remains 15m behind the original barrier and 0.5m above the ground. Figure 9 shows the insertion loss against receiver distance curves for several configurations [5]. The most striking result is that the parallel barrier case with no absorption has the lowest performance rating. In this situation, the addition of a second barrier serves as an unwanted noise reflector. To alleviate this situation, both barriers are lined with highly absorbent material. In the same figure, it is seen that this scenario provides the same protection for both shadow regions as does a single perfectly absorbing single barrier to its shadow region. Thus in order to achieve the same performance on both sides of the road as originally intended for just one side with a single barrier, absorbent coatings are critical.

CONCLUSIONS

The boundary element models have revealed several significant relationships between barrier design characteristics and

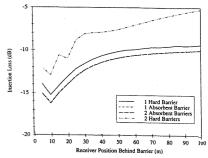


Fig 9: Single/Double Barrier Configurations

insertion loss. A very important result is the understanding of the frequency dependance of the barrier performance. The source spectrum will thus influence the barrier rating. It has been shown that simple changes in barrier and berm cross-section greatly affect the barrier acoustic performance. When the source is close to the barrier or when double barriers are used, the use of an absorptive lining is highly beneficial.

FUTURE STUDY

Two important simplifications were made in this study: two dimensional modelling and uniform atmospheric conditions. Research is now underway way to study finite length 3D barriers and to model the effects of temperature gradients in the air.

ACKNOWLEDGMENTS

The authors would like to thank the Canadian Mortgage and Housing Corporation and the Natural Sciences and Engineering Research Council of Canada for the partial financial support of this work.

REFERENCES

- 1. Maekawa, Z., "Noise Reduction by Screens", Applied Acoustics, 1, pp. 57-173, 1968.
- Hothersall, D.C., Chandler-Wilde, S.N. and Hajmirzae, M.N., "Efficiency of Single Noise Barriers", J. Sound and Vibration, 146 (2), pp. 303-322, 1991.
- SYSNOISE User's Manual, Version 5.1, Numerical Integration Technologies, Leuven, Belgium, 1994.
- Lewis, P.T., "The Noise Generated by Single Vehicles in Freely Flowing Traffic". J. Sound and Vibration, 30(2), pp. 207-220, 1973.
- Fyfe, K.R. and Harrison, C.C., "Modelling of Road Noise and Optimal Barrier Design, Canada Mortgage and Housing Corporation Report, 1995.
- Fyfe, K.R. and Harrison, C.C. "Wave-Based Road Noise Barrier Analysis, Subm. to Applied Acoustics

For further information, please contact the authors at:

University of Alberta
Department of Mechanical Engineering
4-9 Mechanical Engineering Building
Edmonton, Canada
Tel 403 492-3598
Fax 403 492-2200

ANNOUNCEMENT

Durisol Materials Incorporated is seeking parties in the United States who have interest in the manufacture and sales of the full line of Durisol products for the building and transportation industries. Durisol® is a unique construction material with a wide variety of applications and more than 50 years of proven worldwide experience.

Regional licenses are currently available in the U.S. Interested parties are invited to contact:

David P. McKittrick Managing Director Durisol Materials Incorporated 11526 Hemingway Drive Reston, VA 22094 Tel 703.742.0999 Fax 703.318.9632

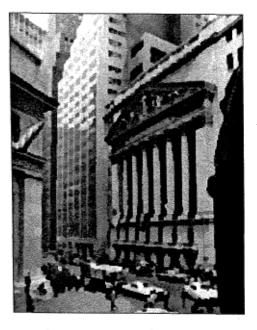
ANNOUNCEMENT

As previously announced, the Transportation Research Board, National Research Council, Committee A1F04 on Transportation Related Noise and Vibration will hold its annual Summer Meeting at the Omni Parker House in Boston July 16-19, 1995. The meeting will be hosted by Volpe Center Acoustics Facility and by Acentech Incorporated.

The agenda includes 21 professional presentations and four technical tours; after-session activities include a dinner/musical comedy revue on Monday evening and a New England clambake outdoors under tents on Tuesday.

This announcement is intended as general information, and will probably reach you in this publication too late to arrange your attendance if you have not already done so, but you may contact Ms. Brenda Hanley at (617) 499-8010 for further information.

The proceedings of the meeting (and hopefully summaries of the professional papers presented) will be published in the next issue of The Wall Journal.


Welcome to The Exhibitors' Hall

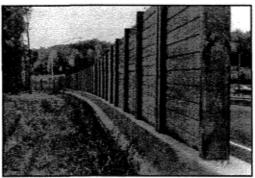
For those of you who will not be attending the 1995 Summer Meeting of the TRB A1F04 Committee on Transportation Related Noise and Vibration in Boston, it has become customary for the meeting hosts to provide a room (or 'hall') in which vendors and suppliers to the transportation noise abatement industry may display their wares.

As with most conventions, booth space is allotted for product or service presentations and demonstrations by personnel of the various vendors. Before, after and during breaks in the conference sessions, attendees are invited to visit the 'hall' and meet with the vendor personnel, while refreshments are made available.

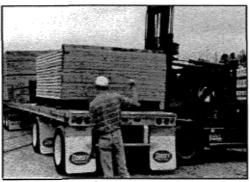
This allows all attendees to examine all of the exhibits, side by side, to gather information, ask questions and make comparisons, all in a relaxed and informal manner and in a short period of time.

In our own humble way, The Wall Journal presents herewith our condensed version of an exhibitors' hall, featuring side by side displays of our much-appreciated advertisers and their products and services.

This Way to The Exhibits


BOOTH LOCATIONS (PAGE NOS.) OF THE EXHIBITORS (ADVERTISERS)

Bowlby & Associates, Inc. Nashville, Tennessee	16
Carsonite International Carson City, Nevada	16
Concrete Impressions, Inc Denver, Colorado	15
Cor Tec Company Hazel Crest, Illinois	20
CYRO INDUSTRIES Mt. Arlington, New Jersey	23
DuBrook Sound Wall System Chesapeake, VA	19
DURISOL International Corp. Hamilton, Ontario, Canada	21
Faddis Concrete Products Downington, Pennsylvania	15
Fosroc Inc. Georgetown, Kentucky	22
Hoover Treated Wood Prod., Inc. Thomson, Georgia	13


Industrial Acoustics Co., Inc. Bronx, New York	19
JTE INC Lorton, Virginia	14
Pickett Wall Systems, Inc. Hollywood, Florida	17
The Reinforced Earth Co. Vienna, Virginia	20
SCANTEK Inc. Silver Spring, Maryland	18
The Scott System, Inc. Denver, Colorado	21
SOUNDTRAP Austin, Texas	14
SOUNDZERO Birdsboro, PA	17
University of Louisville Louisville, Kentucky	18

THE SOUND SOLUTION


PLYVVALL Post and Panel Permanent Engineered Wood Barrier Systems

PLYWALL can be mounted on traffic barriers and bridges. These 4"x10" posts were inserted into cast-in-place sockets which extended down into the footing of this traffic barrier.

Thousands of square feet of ready-to-install panels can be shipped economically by truck anywhere in the U.S. Panels are loaded with a large forklift equipped with 8-foot long forks. All posts, panels, cants, spikes and freight charges are included in the selling price

This bottling plant had received noise complaints from nearby homes. The complaints stopped after installation of this 15-foot high PLYWALL barrier.

New Color Catalog Now Available

- Prefabricated
- Easy to Install
- 5.5 PSF / STC 38
- Attractive and Maintenance Free
- Leakproof
- Shipped Nationwide
- Relocatable

Now Using Parallam® PSL
NEW! Engineered Wood Posts
For Heights to 25 Feet

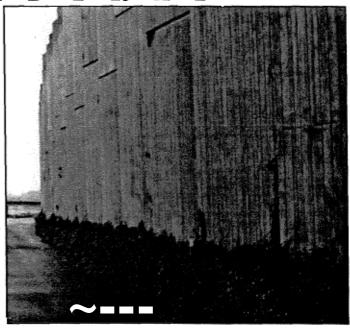
PLYWALL'S installation creates very little site disturbance, This barrier was installed a few months earlier with no damage to the trees or overhanging limbs. Sloping ground is easily accommodated.

FOR MORE INFORMATION CONTACT GLENN WILSON

(800) TEC-WOOD (832-9663) Ext. 210 FAX 706/595-1326

HOOVER
TREATED WOOD PRODUCTS, INC.
P.O. Box 746 • Thomson, GA 30824

SOUND ABSORPTIVE BARRIER: The Common Sense Solution to Noise Abatement - Outside and Inside


- ✓ Excellent Acoustical Performance: NRC up to 1.0 & STC 40.
- ✓ Cost competitive with reflective products.
- ✓ Extremely light-weight (32 lbs. per cu. ft.). Excellent for bridges, tall walls, and retro-fit panels.
- ✓ Easily integrated into most wall and barrier designs.
- ✓ Excellent life-cycle performance $durable/washable/graffiti\ resistant/\emptyset\ flame\ \emptyset\ smoke.$

SOUNDTRAPPLICATIONS

Hospitals **Facilities Dormitories Auditoriums** Restaurants

Concert Halls Athletic Facilities Airport Terminals Noise Barriers **Convention Centers** Museums & Libraries Correctional Facilities **Industrial Applications**

Power Generation Facilities All Transportation Systems

For more information and licensing opportunities, contact: CSI, 3300 Bee Cave Rd., Ste. 650, Austin, TX 78746 Ph: 512-327-8481 Fax: 512-327-5111

"We Build Walls"

SPECIALISTS IN DESIGN/BUILD

JIE, INC is a specialty contractor. Our only business is to provide and install wall systems. And our mission is simple: to continually set the standards of performance in an emerging industry. Our methods are clear...we use our technical and operational resources to provide our clients with an economic advantage along with a level of service unmatched in the industry.

Over three million square feet of walls furnished and installed, using a selection of different wall systems that site-specifically designed to meet the client's requirement.

Call us - we want your business

JTE INC

10109 Giles Run Road

Lorton, VA 22079

Scale: NATIONAL

Tel 703 550-0600 Fax 703 550-0601

THERE'S NOTHING LIKE FENCE-CRETE®

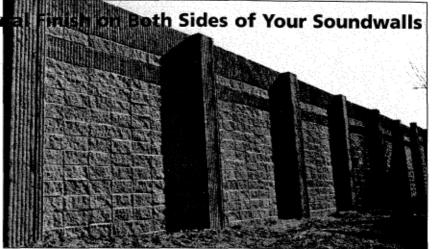
Build it and forget it. It's that simple! Your Fence-Crete wall system maintains its structural integrity for lasting durability. As a precast concrete wall system, Fence-Crete offers multiple colors and textures, is fireproof, impervious to ultra-violet light rays and provides high security. Our specially developed microsilica mix

design, when tested and compared to regular precast concrete, passes ASTM C-672 salt scaling test and results in:

- negligible chloridewater permeability
- increased chemical resistance
- increased freeze/thaw resistance
- increased abrasion resistance
- greater color consistency.

The superior durability and beauty of **Fence-Crete** is only surpassed by its economical price. Add value to any construction project from highway sound barrier installations and municipal beautification to facilities screening and security walls. Call for more information about a maintenance-free **Fence-Crete** system today.

3515 Kings Highway, Downingtown, PA 19335, (610) 269-4685, (610) 873-8431 FAX

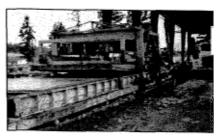

Put an Attractive Architectu

The IMPRESSOR®

Impresses a Large Variety of Patterns on the Reverse Sides of Precast Concrete Panels

- Patented Process Creates
 More Attractive Walls
 For Less Money
- Increase Your Competitive Edge While Providing Greater Value
- Exclusive Area Licenses Available
- Sale, Lease or Joint Venture
- License Includes Free Training Program in Your Plant
- National Promotion

Move into Tomorrow Today!


Concrete Products, Inc. of Seattle used the IMPRESSOR to produce this pattern on the Soundwalls which they manufactured for projects on I-680 in California

For More Information:

CONCRETE IMPRESSIONS

Attn: J. M. (Joe) Cornell 2655 West 39th Avenue Denver, Colorado 80211

Tel. 303 455-1717 Fax 303 426-0299

The IMPRESSOR — In actual production of wall panels for the above project

TrafficNoiseCAD for AutoCAD or MicroStation --- less time, great results

Listen to some satisfied users. . .

"I recently used TrafficNoiseCAD on a 35-mile California project and then converted the STAMINA files to run SOUND32 for Caltrans requirements. The project was completed at about 60% of the budget and Caltrans staff raved about the comprehensive detail of the analysis. I also want to thank you for the excellent support."

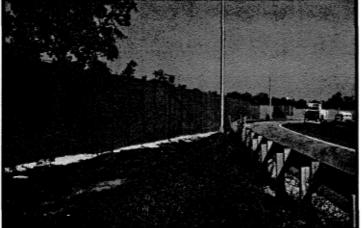
--Kelly Vandever, Parsons Brinckerhoff

"I've been doing traffic noise work since 1978 and TrafficNoiseCAD is the best tool I've ever seen. I've been looking for something like it for 15 years. It's almost too easy to use--you don't even need the manual."

-- Don Anderson, Washington State DOT

Edit Receiver Point Y : 381244.60

Or talk to users at DOTs in New Jersey, Pennsylvania & Nevada, plus McCormick-Taylor, Louis Berger, Parsons DeLeuw & others.


TrafficNoiseCAD-View existing FHWA STAMINA 2.0 files in plan, elevation and 3-D. Graphically edit them. Create new STAMINA files with plans on a digitizing table or from design files on the screen. Fill in other data in pop-up dialog boxes. Easily assign alpha and shielding factors. Run STAMINA. Display Leq results on the drawing. Produce a perspective view for renderings.

Next Advanced Traffic Noise Modeling Short Course: August, 1995 - Call or fax for details

Bowlby & Associates, Inc., Two Maryland Farms, Suite 130, Brentwood, TN 37027 Phone: (615) 661-5838 FAX: (615) 661-5918. AutoCAD, MicroStation and Intergraph are registered trademarks of Autodesk, Inc., Bentley Systems, Inc., and Intergraph Corporation, respectively.

The Carsonite Sound Barrier, made from a glass reinforced composite combined with recycled tire crumb offers a complete solution to your environmental problems. By reducing both noise and waste materials Carsonite becomes

an environmentally sound solution.

Carsonite Soundwall

FOR MORE INFORMATION CALL 1-800-648-7916

CARSONITE INTERNATIONAL • 1301 HOT SPRINGS ROAD • CARSON CITY. NV 89706-0601

onite International . All Rights Res

STRUCTURE MOUNTED 🔀 EASILY INSTALLED

🔼 UTILIZES SCRAP TIRES 🛮 🚵 GRAFFITI RESISTANT

Meets and exceeds the guidelines set for noise reduction coeffient, noise absorption, and wind load requirements by AASHTO and State Departments.

30-TWJ03-95

P.O. 400, Elirdsboro, PA 19508

Structure Mounted **Noise Walls**

- ◆ The problem-solving design solution for transportation officials and communities.
- Light weight barriers facilitate unprecedented convenience and time efficiency.
- ◆ Integral safety rigging protect communities and traffic.

For More Information Call 1-800-321-6275

FAX: (215) 385-7524

THERE ARE 15 GOOD REASONS WHY EXPERIENCED BUYERS AND CONTRACTORS ARE LOOKING HARD

AND LONG AT THIS

NEW SOUNDWALL... MONOWA

Phone: (215) 385-6797

This new monolithic, one-piece panel-and-post modular wall system is value-engineered to be the most efficient design for constructing long, high walls and staying within the budget. There had to be a better way to do it, and we have patented it. There is not enough space here to give you all the details and technical information. But we'll be happy to send you a brochure which provides you with those 15 Good Reasons why you should find out more about how to save money on your soundwall projects. Simply, write, fax or phone us to learn more about the new **monowall** system.

PICKETT WALL SYSTEMS, INC.

4028 north ocean drive tel. 305 927-1529 fax 305 920-1949

hollywood, florida 33019

Attend the nation's longest-running

highway noise analysis seminar.

- Choose from April or October week-long sessions at the University of Louisville's Shelby Campus, featuring state-of-the-art computers and economical campus housing.
- Benefit from the expertise of Drs. Lou Cohn and Al Harris, leading professionals who have trained over 500 highway noise specialists, including representatives from over 30 state highway departments.
- Learn from the latest development in noise analysis, barrier design, and noise prediction software through curriculum designed to suit both beginning and experienced students.
- Use and receive NOISE, the powerful, menu-driven software package with analysis capabilities not found in any other package. Over 40 states are currently using this software that features:
 - # enhanced FHWA STAMINA 2.0 with proven accuracy and the ability to generate Leq contours;
 - enhanced FHWA OPTIMA, a menu-driven program that eliminates the need for awkward E/C analysis, shows results immediately on a split screen, and maintains user cost data;
 - AutoBar and CHINA, fully automated barrier design programs;
 - REBAR, the most accurate parallel barrier analysis program available;
 - ★ HICNOM—for construction noise prediction;
 - LOS, which calculates line-of-sight break points for all barrier segments;
 - PLUS fully operational MicroStation and AutoCAD interface programs to create/edit STAMINA input files from roadway design files or to digitize from plan sheets (provided to participants at no additional costs)

BONUS!

ALL software will be mailed immediately upon receipt of your paid registration.

Fee: \$895 includes comprehensive course manual and ALL software (with full technical support).

Next sessions:

October 16-20, 1995

For registration information, call Mary Baechle at 502/852-6590.

For technical information, call Drs. Cohn or Harris at 502/852-6276

"The software and

subject simple."

seminar make a difficult

-James Novak,

Midwest Consulting Engineers, Chicago, IL

Do your work faster and more accurately with RTA's proven acoustical software.

Environmental Noise Model (ENM) is world-class. Now, the new WINDOWS version is even more so.

Individually defined noise sources. ground effects, topography, wind and temperature gradients, and barriers are all input on spreadsheets. Predictions include contour maps and rank ordering of noise sources.

Also available are dB box for fast computing in acoustics, including STC. TL and IIC. And dB ray for modeling acoustical paths in rooms. All operate on IBM compatibles.

Be time- and value-conscious.

Call today.

NTEK INC

916 Gist Avenue Silver Spring, MD 20910 Tel: (301) 495-7738 • FAX -7739

To help you meet today's capitalspending constraints, we will work with you on whatever it takes - Rental, Lease or Lease Purchase - to get you the equipment you need.

From single instruments to complete systems, we offer Outdoor Noise Monitors, SLMs, FFTs, Dosimeters, RTAs, Tapping Machines, Reference Sound Sources, DAT Recorders, Multiplexers, Human-Body Vibration Analyzers, Level Recorders, Microphones, Calibrators, and more.

Our rental and lease plans are flexible enough to meet your needs. Our rates are reasonable. And you still get our expert engineering assistance-even paid on-site personnel are available.

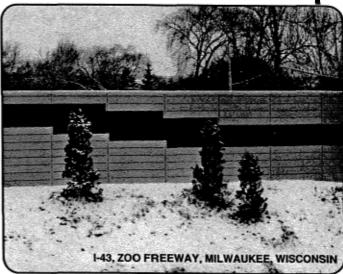
Strike a deal with us. And get on with your job.

Call today.

916 Gist Avenue Silver Spring, MD 20910 Tel: (301) 495-7738 · FAX 7739

—— NEW High Performance Transportation Sound Barriers

IAC NOISHIELD® Transportation Sound Barriers :


- High low-frequency panel sound absorption helps reduce undesirable community noise.
- High sound-transmission loss assures maximum sound barrier effectiveness.
- Tough, thermosetting, polyester, graffiti-resistant, cleanable finish.
- Rugged low-weight construction.
- Wind load resistance per AASHTO Guide Specifications
- Relocatable.
- Steel or aluminum construction available as a free-standing barrier or as cladding for existing noise-reflecting walls.
- · Laboratory tested, reports available:

ASTM E 90 Sound Transmission Loss — STC 31 to 38.
ASTM C 423 Sound Absorption Coefficients — NRC 0.95.

ASTM 6 423 Sound Absorption Coefficients — NAC 0.95.

ASTM B 117 Corrosion Resistance — 7000 hours, no failure.

ASTM G 23 Accelerated Weathering — no degradation.

INDUSTRIAL ACOUSTICS COMPANY

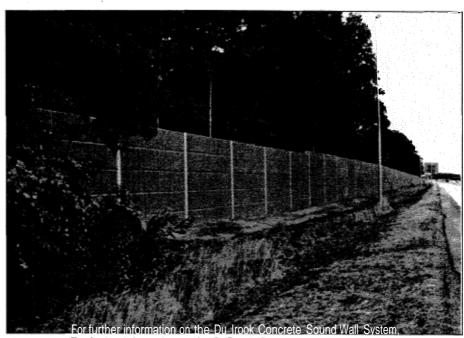
SINCE 1949 — LEADERS IN NOISE CONTROL ENGINEERING, PRODUCTS AND SYSTEMS

UNITED STATES

1160 COMMERCE AVENUE BRONX, NEW YORK 10462-5599 PHONE: (718) 931-8000 FAX: (718) 863-1138 UNITED KINGDOM CENTRAL TRADING ESTATE STAINES, MIDDLESEX, TW18 4XB PHONE: (0784) 456-251 FAX: (0784) 463-303, TELEX: 25518 GERMANY SOHLWEG 17 D-41372 NIEDERKRÜCHTEN PHONE: (02163) 8431 FAX: (02163) 80618

TECHNICAL REPRESENTATION IN PRINCIPAL CITIES THROUGHOUT THE WORLD

Introducing: The Most Efficient, Cost Effective and Environmentally Responsible Sound Wall in the World — **DuBrook**™

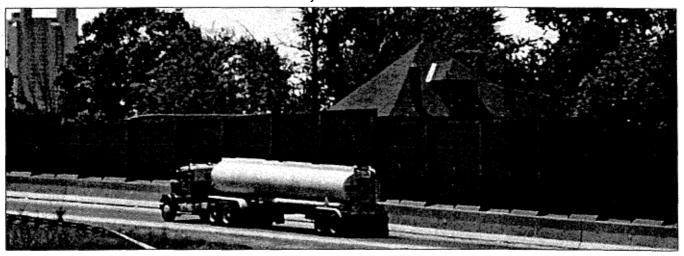

Environmental Impact Statement

The DuBrook Concrete Sound Wall System uses Recycled Tires as an integral part of the wall panel — consuming approximately 25 scrap tires for every standard panel. The rubber in the DuBrook Sound Wall System is not a gimmick. It is an important component for sound absorption.

Help the States meet federally-mandated recycling laws for scrap tires, and help the clean-up of the local environment in a useful and economical manner for providing highway traffic noise abatement.

Statements of Fact

- Over 1,300,000 square feet in place, consuming approximately one-quarter million tires
- NRC of 0.80 and STC of 42
- Tested at 300 freeze/thaw cycles under ASTM C666 with no visible change
- Free draining will not absorb moisture
- Rough Texture deters Grafitti artists
- 5-Man Crew can erect 10,000 square feet of wall in an 8-hour day
- Precast Facility located on Intercoastal Waterway for barge delivery on East Coast. Facility can be easily relocated for large projects anywhere in the U.S.


For further information on the DuBrook Concrete Sound Wall System, contact Dan McGhee at::

CONCRETE PLACEMENT SYSTEMS, INC.

100B North Dominion Boulevard • Chesapeake • Virginia 23320
Tel 804 545-5215 Fax 804 545-6296
Home Office, Chantilly, Virginia • Tel. 703 222-7054

Sound Off™ Noise Barrier System

By COR TEC

" Sound Off " Offers You:

- Outstanding Noise Protection (Exceeds all STC and Performance Based Specifications).
- Light Weight, making it ideal for use over bridges (Under 5 pounds per square foot).
- ❖ Simple and Easy to Install (50 square feet/man hour of labor).
- ❖ Graffiti Resistant, Maintenance Free Surface Finish.
- 20 Year Warranty Against Surface Color Fading
- ♦ 25+ Years of Experience Making Panels for the Transportation Industry.

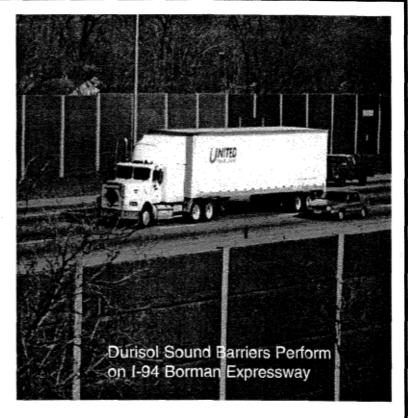
For More Information or a Price Quote, Contact COR TEC's Customer Service at 1-800-879-4377

COR TEC COMPANY

2351 Kenskill Avenue Washington Court House, Ohio 43160 Fax 614-335-4843

" Sound Off " is a registered trademark of Dyrotech Industries.

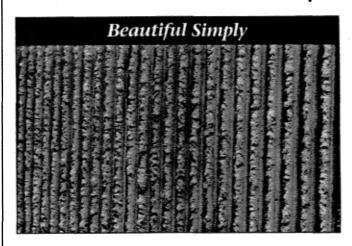
Durisol

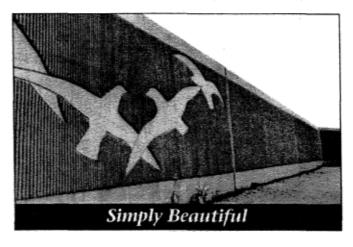

Two-Sided Sound-Absorptive Panels Comply With Aesthetic Treatment, Freeze-Thaw, Salt Scaling and Accelerated Weathering Requirements of Indiana Department of Transportation

The Reinforced Earth Company

8614 Westwood Center Drive, Suite 1100 Vienna, Virginia 22182 Tel 703 821-1175 Fax 703 821-1815

•••• reinforced earth

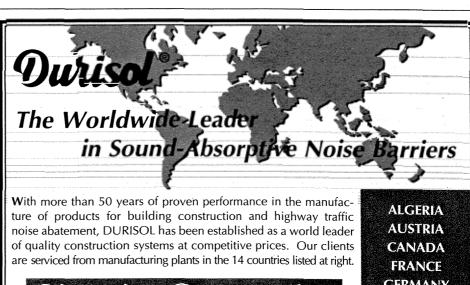

Write, fax or phone for further project information or to receive literature or design details



ATLANTA BOSTON CHICAGO DALLAS DENVER LOS ANGELES ORLANDO SEATTLE

Architectural Concrete

by Scott System

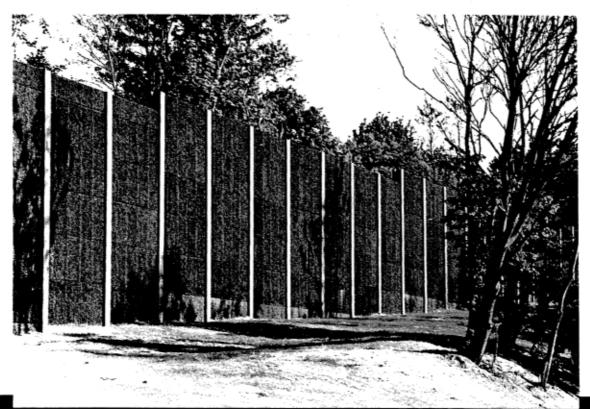


Flat concrete walls are a thing of the past. The ease of producing either a simple texture or an ornate graphic can turn a cold, grey slab into a work of public art. There are hundreds of textures available, or add an artistic graphic

(like the seagulls, at right) and the design possibilities are infinite! Call Scott System to see how other communities have kept their designers, engineers, and the neighbors happy.

4575 Joliet Street · Denver, Colorado 80239 USA · Telephone: 303.371.9580 · Fax 303.371.8614

Licensing Opportunity


Manufacturing licenses are available in selected geographic locations. We cooperate in materials research, process technologies, product and application development, design and engineering, and international marketing and sales.

Phone, fax or write for full details.

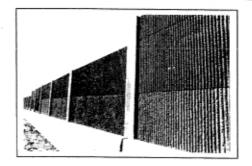
World Headquarters DURISOL INTERNATIONAL CORP.

95 Frid Street, Hamilton, Ontario L8P 4M3, Canada Tel. 905-521-0999 • Fax 905-521-8658 ALGERIA
AUSTRIA
CANADA
FRANCE
GERMANY
HOLLAND
HUNGARY
ITALY
JAPAN
YUGOSLAVIA
MOROCCO
SPAIN
SWITZERLAND
UNITED STATES

When beautifying and protecting soundwall...

Specify Fosroc.

Sound absorptive highway noise barriers are becoming specified more and more. To significantly improve the appearance and durability of these structures, more specifiers are relying on **Fosroc** for:


- Pigmented, VOC compliant acrylic stains to provide an attractive, uniform color and water repellent protection.

 Aesthetically pleasing anti graffiti properties.
 - Specify Cementrate or Cementrate WB.
- Graffiti resistant, pigmented coatings protect soundwalls from vandalism.
 - Specify Graffitiguard 2.

Also a wide range of sealers/coatings available:

- EA-Sealer high solids, non-yellowing "wet look" acrylic sealer. Solvent and VOC compliant. Also available in "low lustre" finish.
- Exposed aggregate retarders create uniform etch reveals on soundwall. Preco retarders are more economical, cleaner and less complicated than acid etching or sandblasting.

The **Preco** Precast Division offers enhanced technical support to all of our customers. Free on-site seminars are also available on concrete coating technology. Call or write today for more information on how we can help you on your next soundwall project.

Fosroc Inc.
Preco Precast Division

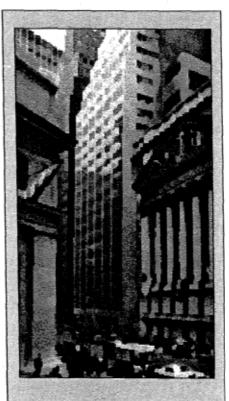
150 Carley Court Georgetown, KY 40324 Tel 800-645-1258 Fax 502-863-4010

A BURMAH CASTROLCOMPANY

Reduce highway noise and preserve the view with Acrulite 237

ACRYLITE 237 sheet application on Highway 76 in Oceanside, California.

Highway noise coupled with the appearance of wood and masonary noise barriers pose problems. ACRYLITE 237 acrylic sheet offers a clear solution. This break-resistant transparent sheet is specifically formulated for use as a noise-control material on highways. It is weather resistant, non-yellowing, lightweight, chemical resistant, and easy to install, clean and maintain. And, best of all, it's clear. Drivers won't suffer from tunnel vision and the neighborhood remains beautiful.


ACRYLITE 237 sheet has a sound transmission classification (STC) rating of 32 decibels for 0.500 inch (12.7mm) thick sheet and 34 decibles for 0.750 inch (19.1mm) sheet. It is available in various standard sheet sizes.

Get all the details and get started on a view-saving alternative. Write D. Artz, CYRO INDUSTRIES, 100 Enterprise Drive, Rockaway, NJ 07866. Or call 1-800-631-5384.

Quality Products • Innovative Technologies • Caring People

1995 CYRO Industries. All Rights Reserved

Exit
from
the
Exhibitors'
Hall

Thank you for taking
the time to inspect
the products and services
of our suppliers.
We hope you found
your visit to be informative
and interesting.
We would appreciate
your comments on
this unusual presentation
of our advertisers.

Reader Registration

For Federal, State and Local Government Officials, Government Associations, Universities and Libraries

Only you are entitled to a **free** subscription to The Wall Journal.

Just provide us with a subscription request on your letterhead and mail it to:

The Wall Journal, P.O. Box 1217, Lehigh Acres, FL 33970-1217

Please don't telephone it to us. If you have already registered, just ignore this — you are safely in our database and will continue to receive The Journal..

Reader Subscription

For U.S. Consultants, Contractors, Manufacturers, Equipment Vendors and Others in the Private Sector

Please ☐ begin/ ☐ renew my subscription to The Wall Journal.

Subscriptions are for a one-year period (six bi-monthly issues)

Single Copy Subscription (USA) ☐ 1 Year, \$17.95 Corporate Subscription (5 copies each issue, one address) ☐ 1 Year, \$56.00

Please order your subscription on your letterhead, enclose your check for the appropriate amount, and mail to:

The Wall Journal, P.O. Box 1217, Lehigh Acres, FL 33970-1217

Back Issues

Issues # 1 thru # 16 are available at a cost of \$3.00 each to cover postage and handling — this applies to both public and private sectors

Keep your files up to date for a unique chronology of the events and workings of other professionals in the field of transportation related environmental issues.

Subscriptions

Subscriptions to **The Wall Journal** are free of charge to federal, state and local government agencies and their officials, to government associations, and to universities, provided they have registered in writing by sending name, department and complete mailing address. We would also like to have telephone and fax numbers for our referral records.

Subscriptions for the private sector (e.g.,consulting engineers, contractors, equipment manufacturers and vendors) are available at the costs per year (6 issues) shown below. Please include your check with your subscription order.

U.S. Subscribers: \$17.95. Please send checks and subscription orders to The Wall Journal, P.O. Box 1217, Lehigh Acres, FL 33970-1217.

Canadian Subscribers: \$26.00 (CDN, including GST). Please make checks and subscription orders payable to Catseye Services, Postal Outlet Box 27001, Etobicoke, Ontario M9W 6L0.

All Others: \$30.00 (U.S.). Please send subscription orders and drafts payable in U.S. funds through U.S. banks to The Wall Journal, P.O. Box 1217, Lehigh Acres, FL 33970-1217.

Advertising

Display advertising rates and sizes are contained in our Advertising Rate Schedule, a copy of which is available on request sent to The Wall Journal, P.O. Box 1217, Lehigh Acres FL 33970-1217.

The Wall Journal

P.O. Box 1217 Lehigh Acres, FL 33970-1217 BULK RATE U.S. POSTAGE PAID PERMIT NO. 198 FORT MYERS FL

ADDRESS CORRECTION REQUESTED

Printed on Recycled Paper